Indian Statistical Institute B.Math I Year Second Semester, 2005-2006 Mid Semester Examination Probability Theory II Time: 2 1/2 hrs Date:01-03-06 Max. Marks : 80

Note: The paper carries 85 marks. Any score above 80 will be treated as 80.

- 1. Suppose the times it takes two students to solve a problem are independently and exponentially distributed with parameter $\lambda > 0$. Find the probability that the first student will take at least thrice as long as the second student to solve the problem. [12]
- 2. Let X, Y be i.i.d random variables with continuous strictly positive probability density function. Let F denote the common distribution function. Find the probability density function of F(X) + F(Y). [15]
- 3. Let X_1, X_2 be independent random variables such that $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$. Let $Y_1 = X_1$, $Y_2 = X_1 + X_2$. Find
 - (a) the distribution of (Y_1, Y_2)
 - (b) cov (Y_1, Y_2)
- 4. Let μ₁, μ₂ ∈ ℝ, σ₁, σ₂ > 0, -1 < ρ < 1.
 (a) Write down the bivariate normal probability density function with means μ₁, μ₂, variances σ₁², σ₂², and correlation coefficient ρ.

(b) Find the marginal and the conditional probability density functions.

[7+13]

[13+5]

5. Let X_1 , X_2 , X_3 be independent N(0, 1) random variables. Indicating clearly the results you are using, find the distributions of

(i)
$$X_1^2 + X_2^2 + X_3^2$$
, (ii) $\frac{2X_1^2}{(X_2^2 + X_3^2)}$, (iii) $\frac{X_1}{X_2}$ [6+6+8]